报告名称:某些局部化正算子的点态逼近
报告专家:谢林森 教授
专家所在单位:丽水学院
报告时间:2023年6月20日周二上午10:00-12:00
报告地点:BWIN必赢201会议室
专家简介:
谢林森,丽水学院二级教授,博士,浙江师范大学硕士研究生导师,丽水学院原副经理。入选浙江省“151人才工程”第二层次,享受国务院政府特殊津贴。主要从事函数逼近论、非线性泛函及应用研究。在国内外重要学术刊物上发表学术论文45篇。主持参与完成国家自然科学基金面上项目4项,主持完成浙江省自然科学基金项目3项,主持完成浙江省科技计划项目1项。获浙江省高校科研成果二等奖2次、三等奖2次,获“十一五”浙江省自然科学基金优秀成果奖1次。曾应邀多次访问德国、英国、美国、加拿大和澳大利亚等国的大学,曾应邀多次参加国际学术会议。
报告摘要:
为了减少在应用中的计算量以及避免不必要的数据采集,我们构造了Bernstein算子的局部化变形算子,借助于修正的Berry-Esseen定理,研究了这种新的局部化Bernstein算子的收敛性,给出了其逼近阶,并给出了这种局部化算子收敛到被逼近函数本身的充分必要条件。另外,我们分别构造了Szasz-Mirakjan算子、Baskakov算子的局部化算子,采用数学分析的方法,对于这些局部化算子分别给出了不同状态下的点态逼近定理。