报告名称:On Thurston's "geometric ideal triangulation" conjecture
报告专家:葛化彬
专家所在单位: 中国人民大学
报告时间:2021年4月18日10:20-11:10
报告地点: 腾讯会议274 617 925
专家简介:葛化彬,现任中国人民大学数学学院教授,博士生导师。主要研究领域是几何与拓扑,部分研究成果发表在Amer. J. Math., Geom. Funct. Anal., Advances in Math., Math. Ann., J. Funct. Anal.,Trans. Amer. Math. Soc., Calc. Var. PDEs,IMRN等国际高水平数学期刊上。
报告摘要:Using combinatorial Ricci flow methods, we shall prove the following theorem: Let M be a compact 3-manifold with boundary consisting of surfaces of genus at least 2. If M admits an ideal triangulation with valence at least 10 at all edges, then there exists a unique hyperbolic metric on M with totally geodesic boundary under which the ideal triangulation is geometric. For a special class of 3-manifolds, the theorem affirms a folklore conjecture which exists for almost 40 years under not so strong assumptions. This is based on joint work with Ke Feng and Bobo Hua.
邀请人: 毛井